Abstract
We investigate the implications of energy conditions on cosmological compactification solutions of the higher-dimensional Einstein field equations. It is known that the strong energy condition forbids time-independent compactifications to de Sitter space but allows time-dependent compactifications to other (homogeneous and isotropic) expanding universes that undergo a transient period of acceleration. Here we show that the same assumptions allow compactification to FLRW universes undergoing late-time accelerated expansion; the late-time stress tensor is a perfect fluid but with a lower bound on the pressure/energy-density ratio that excludes de Sitter but allows accelerated power-law expansion. The compact space undergoes a decelerating expansion that leads to decompactification, but on an arbitrarily long timescale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.