Abstract

In this study, we discuss coexistence of the early-time inflation and the late-time acceleration of the universe in the context of the theory of [Formula: see text] gravity with scalar field which is minimally coupled with the gravity, where [Formula: see text] is the gauss bonnet invariant and [Formula: see text] is the trace of energy–momentum tensor (EMT). We reconstruct the Friedmann equation (FE) and then search for the real value of a particular model [Formula: see text], where [Formula: see text] and [Formula: see text] are real constants. A Gauss–Bonnet system (GBS) for viable cosmologies arising from the matter-source term [Formula: see text] and the scalar field, is obtained. We find that the case [Formula: see text] together with [Formula: see text] in the system gives the late-time cosmic acceleration while the source term [Formula: see text] acts as a quintessence type of dark energy. On the other hand, the general entropy expression of the universe is obtained by making use of the first law of thermodynamics (FLT) method. After theoretically analyzing the inflation in the entropy frame, we find a new condition [Formula: see text] with [Formula: see text] in the system. Then, from the observational analysis of inflation, the spectral index parameter and the scalar-tensor ratio are calculated under the new condition. In brief, we obtain a viable cosmological system arising from some modifications such as the scalar field and the source term, which can unify the early inflation and the late-time cosmic acceleration besides the deceleration regions of the universe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call