Abstract

BackgroundPrenatal exposure to infection and/or inflammation is increasingly recognized to play an important role in neurodevelopmental brain disorders. It has recently been postulated that prenatal immune activation, especially when occurring during late gestational stages, may also induce pathological brain aging via sustained effects on systemic and central inflammation. Here, we tested this hypothesis using an established mouse model of exposure to viral-like immune activation in late pregnancy.MethodsPregnant C57BL6/J mice on gestation day 17 were treated with the viral mimetic polyriboinosinic-polyribocytidilic acid (poly(I:C)) or control vehicle solution. The resulting offspring were first tested using cognitive and behavioral paradigms known to be sensitive to hippocampal damage, after which they were assigned to quantitative analyses of inflammatory cytokines, microglia density and morphology, astrocyte density, presynaptic markers, and neurotrophin expression in the hippocampus throughout aging (1, 5, and 22 months of age).ResultsMaternal poly(I:C) treatment led to a robust increase in inflammatory cytokine levels in late gestation but did not cause persistent systemic or hippocampal inflammation in the offspring. The late prenatal manipulation also failed to cause long-term changes in microglia density, morphology, or activation, and did not induce signs of astrogliosis in pubescent, adult, or aged offspring. Despite the lack of persistent inflammatory or glial anomalies, offspring of poly(I:C)-exposed mothers showed marked and partly age-dependent deficits in hippocampus-regulated cognitive functions as well as impaired hippocampal synaptophysin and brain-derived neurotrophic factor (BDNF) expression.ConclusionsLate prenatal exposure to viral-like immune activation in mice causes hippocampus-related cognitive and synaptic deficits in the absence of chronic inflammation across aging. These findings do not support the hypothesis that this form of prenatal immune activation may induce pathological brain aging via sustained effects on systemic and central inflammation. We further conclude that poly(I:C)-based prenatal immune activation models are reliable in their effectiveness to induce (hippocampal) neuropathology across aging, but they appear unsuited for studying the role of chronic systemic or central inflammation in brain aging.Electronic supplementary materialThe online version of this article (doi:10.1186/s12974-015-0437-y) contains supplementary material, which is available to authorized users.

Highlights

  • Prenatal exposure to infection and/or inflammation is increasingly recognized to play an important role in neurodevelopmental brain disorders

  • Effects of late prenatal immune activation on hippocampus-regulated functions In a step, we examined the long-term behavioral and cognitive consequences of late prenatal immune activation by assessing hippocampus-dependent functions in pubescent (1 month old), adult (5 months old), and aged (22 months old) offspring born to poly(I:C)-exposed or control mothers

  • These findings demonstrate that late prenatal immune activation causes an early pubescent onset of spatial short-term memory impairment, which in control offspring emerges as a result of normative aging

Read more

Summary

Introduction

Prenatal exposure to infection and/or inflammation is increasingly recognized to play an important role in neurodevelopmental brain disorders. It has recently been postulated that prenatal immune activation, especially when occurring during late gestational stages, may induce pathological brain aging via sustained effects on systemic and central inflammation. We tested this hypothesis using an established mouse model of exposure to viral-like immune activation in late pregnancy. It is possible that the gestational timing of immune activation may influence the long-term inflammatory consequences It appears that maternal immune challenges in early gestation do not reliably induce persistent systemic inflammation and microglia activation in the offspring, whereas such inflammatory effects have been noted following prenatal immune activation in late gestation [8, 17]. The inflammatory effects in the former condition seemed to be associated with altered hippocampal microglia activation [17], suggesting that maternal immune activation in late pregnancy induces sustained effects on inflammatory processes in the offspring’s hippocampal formation

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.