Abstract

Variations in production rates of warm North Atlantic Deep Water (NADW) have been proposed as a mechanism for linking climate fluctuations in the northern and southern hemispheres during the Pleistocene. We have tested this hypothesis by examining the sensitivity of a thermodynamic/dynamic model for Antarctic sea ice to changes in vertical ocean heat flux and comparing the simulations with modified CLIMAP sea-ice maps for 18 000 B.P. Results suggest that changes in NADW production rates, and the consequent changes in the vertical ocean heat flux in the Antarctic, can only account for about 20%–30% of the overall variance in Antarctic sea-ice extent. This conclusion has been validated against an independent geological data set involving a time series of sea-surface temperatures from the subantarctic. The latter comparison suggests that, although the overall influence of NADW is relatively minor, the linkage may be much more significant at the 41 000-year obliquity period. Despite some limitations in the models and geological data, we conclude that NADW variations may have played only a modest role in causing late Pleistocene climate change in the high latitudes of the southern hemisphere. Our conclusion is consistent with calculations by Manabe and Broccoli (1985) suggesting that atmospheric CO2 changes may be more important for linking the two hemispheres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call