Abstract

Partially due to lack of structural and sedimentary records to constrain the Jurassic-to-Cretaceous evolution, there was a missing process here in the eastern margin of Tibetan Plateau as it changed from the Paleo-Tethyan to Neo- Tethyan regime. Based on the analysis of 125 thermochronology ages (U/Pb, 40 Ar/ 39 A, 87 Rb/ 86 Sr, FT, U-Th/He) of igneous rocks from the eastern margin of Tibet, we propose a multisystem thermochronology approach to restore the cooling and emplacement of granites and decipher the missing process. Our integrated study suggests that a key Late Cretaceous (about 100Ma) tectonic change from the Paleo-Tethyan to Neo-Tethyan regime took place there. In the Late Triassic period, the initial emplacement of granite in the Songpan-Ganzi Fold Belt (SGFB) was characterized by a decrease in emplacement age and depth from west to east, and from north to south. Subsequently, all were followed by a very long period of slow cooling, which was followed by a rapid emplacement of about 100Ma. The intensive granite emplacement took place all over except northeastern SGFB, with a decrease in emplacement depth from west to east, which was linked with the far-field effect of Lhasa-Qiangtang collision. After this episode, the cooling history of granite in SGFB had a rapid emplacement on the subsurface under the control of the Neo-Tethyan regime. This process has control of the post Late Cretaceous regional magmatic activity and tectonics, as well as the sedimentary response in Sichuan and Xichang basin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call