Abstract

Magnetotelluric (MT) survey has been carried out in the eastern margin of the Tibetan Plateau and its neighboring Shimian-Leshan area, Sichuan Province. Analysis of this MT data reveals that the electric structure of the Tibetan Plateau differ much from that of the Sichuan block. In general, the electric resistivity of crust beneath the Sichuan block in the east is larger than that of the eastern margin of the Tibetan Plateau in the west. The crust of the plateau is divided into upper, middle, and lower layers. The middle crust is a low resistivity layer with minimum down to 3–10 Ωm about 10–15 km thick. It presumably contains partial melt and/or salt-bearing fluids with low viscosity, prone to deform and flow, producing a “channel flow” under the southeastward squeeze of the eastern Tibetan Plateau. This low-resistivity layer makes the upper crust decoupled mechanically from the lower crust. In the brittle upper crust, faults are dominated by left-lateral strike-slip and thrust motions, leading to surface rising and shallow earthquakes. The low-resistivity layer also cut the Xianshuihe-Anninghe fault zone into two sections vertically. In this region, the thicknesses of upper, middle, and lower crust vary laterally, producing a transitional zone in the eastern margin of the Tibetan Plateau characterized by thicker crust and higher elevation in the west and thinner crust and lower elevation in the east.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.