Abstract
Although the fossil record of non-avian dinosaurs from the Cretaceous of Antarctica is the poorest of any continent, fossils representing at least five major taxonomic groups (Ankylosauria, early-diverging Ornithopoda, Hadrosauridae, Titanosauria, and Theropoda) have been recovered. All come from Upper Cretaceous (Coniacian–Maastrichtian) marine and nearshore deposits belonging to the Gustav and Marambio groups of the James Ross Basin at the northern tip of the Antarctic Peninsula. The majority of these finds have come from the Campanian–Maastrichtian Snow Hill Island and Lopez de Bertodano formations of James Ross and Vega islands. Given the rarity of Antarctic Cretaceous non-avian dinosaurs, discoveries of any fossils of these archosaurs, no matter how meager, are of significance. Here we describe fragmentary new ornithischian (ankylosaur and ornithopod) material from the upper Campanian–lower Maastrichtian Cape Lamb Member of the Snow Hill Island Formation and the Maastrichtian Sandwich Bluff Member of the Lopez de Bertodano Formation. One of these specimens is considered to probably pertain to the holotypic individual of the early-diverging ornithopod Morrosaurus antarcticus. We also provide an up-to-date synthesis of the Late Cretaceous non-avian dinosaur record of the James Ross Basin and analyze the biostratigraphic occurrences of the various finds, demonstrating that most (including all named taxa and all reasonably complete skeletons discovered to date) occur within a relatively condensed temporal interval of the late Campanian to early Maastrichtian. Most or all James Ross Basin dinosaurs share close affinities with penecontemporaneous taxa from Patagonia, indicating that at least some continental vertebrates could disperse between southern South America and Antarctica during the final stages of the Mesozoic. Citation: Lamanna M C, Case J A, Roberts E M, et al. Late Cretaceous non-avian dinosaurs from the James Ross Basin, Antarctica: description of new material, updated synthesis, biostratigraphy, and paleobiogeography. Adv Polar Sci, 2019, 30(3): 228-250, doi: 10.13679/j.advps.2019.0007
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.