Abstract

Late Cenozoic transtensional fault belt was discovered on Shajingzi fault belt, NW boundary of the Awati Sag in the northwestern Tarim Basin. And numerous Quaternary normal faults were discovered on Aqia and Tumuxiuke fault belts, SW boundary of Awati. This discovery reveals Quaternary normal fault activity in the Tarim Basin for the first time. It is also a new discovery in the southern flank of Tianshan Mountains. Shajingzi transtensional fault belt is made up of numerous, small normal faults. Horizontally, the normal faults are arranged in right-step, en echelon patterns along the preexisting Shajingzi basement fault, forming a sinistral transtensional normal fault belt. In profile, they cut through the Paleozoic to the mid-Quaternary and combine to form negative flower structures. The Late Cenozoic normal faults on the SW boundary of Awati Sag were distributed mainly in the uplift side of the preexisting Aqia and Tumuxiuke basement-involved faults, and combined to form small horst and graben structures in profile. Based on the intensive seismic interpretation, careful fault mapping, and growth index analysis, we conclude that the normal fault activity of Shajingzi transtensional fault belt began from Late Pliocene and ceased in Late Pleistocene (mid-Quaternary). And the normal faulting on the SW boundary of Awati Sag began from the very beginning of Quaternary and ceased in Pleistocene. The normal faulting on Awati’s SW boundary began a little later than those on the NW boundary. The origin of Shajingzi transtensional normal fault belt was due to the left-lateral strike-slip occurred in the southern flank of Tianshan, and then, due to the eastward escape of the Awati block, a tensional stress developed the normal faults on its SW boundary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call