Abstract
We present a methodology for probabilistic load forecasting that is based on lasso (least absolute shrinkage and selection operator) estimation. The model considered can be regarded as a bivariate time-varying threshold autoregressive(AR) process for the hourly electric load and temperature. The joint modeling approach incorporates the temperature effects directly, and reflects daily, weekly, and annual seasonal patterns and public holiday effects. We provide two empirical studies, one based on the probabilistic load forecasting track of the Global Energy Forecasting Competition 2014 (GEFCom2014-L), and the other based on another recent probabilistic load forecasting competition that follows a setup similar to that of GEFCom2014-L. In both empirical case studies, the proposed methodology outperforms two multiple linear regression based benchmarks from among the top eight entries to GEFCom2014-L.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.