Abstract
Laser doping to form selective emitters offers an attractive method to increase the performance of silicon wafer based photovoltaics. However, the effect of processing conditions, such as laser power and travel speed, on molten zone geometry and the phosphorus dopant profile is not well understood. A mathematical model is developed to quantitatively investigate and understand how processing parameters impact the heat and mass transfer and fluid flow during laser doping using continuous wave lasers. Calculated molten zone dimensions and dopant concentration profiles are in good agreement with independent experimental data reported in the literature. The mechanisms for heat (conduction) and mass (convection) transport are examined, which lays the foundation for quantitatively understanding the effect of processing conditions on molten zone geometry and dopant concentration distribution. The validated model and insight into heat and mass transport mechanisms also provide the bases for developing process maps, which are presented in part II. These maps illustrate the effects of output power and travel speed on molten zone geometry, average dopant concentration, dopant profile shape, and sheet resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.