Abstract

The development of rapid prototyping techniques for the fabrication of microelectronic structures has seen rapid growth over the past decade. In particular, laser-induced forward transfer (LIFT) is a non-lithographic direct-write technique that offers the advantages of high speed / throughput, high resolution, materials versatility, and substrate compatibility. Because of the high degree of control over size and shape of printed material, the development of a wide range of microelectronic components, including interconnects, antennas, and sensors, has become possible using LIFT. In this paper, we explore the use of LIFT to print various 3D microstructures including high aspect ratio micro pillars using high viscosity Ag nanopastes. In addition, we demonstrate the fabrication of interconnects via LIFT on RF switches that, after printing and subsequent curing, perform similarly to an analogous wire-bonded device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.