Abstract
Ammonia (NH3) is commonly used as group V precursor in gallium nitride (GaN) metalorganic chemical vapor deposition (MOCVD). The high background carbon (C) impurity in MOCVD GaN is related to the low pyrolysis efficiency of NH3, which represents one of the fundamental challenges hindering the development of high purity thick GaN for vertical high power device applications. This work uses a laser-assisted MOCVD (LA-MOCVD) growth technique to address the high-C issue in MOCVD GaN. Carbon dioxide (CO2) laser with wavelength of 9.219 um was utilized to facilitate NH3 decomposition via resonant vibrational excitation. The LA-MOCVD GaN growth rate (as high as 10 um/hr) shows a strong linear relationship with the trimethylgallium (TMGa) flow rate, indicating high effective V/III ratios and hence efficient NH3 decomposition. Pits-free surface morphology of LA-MOCVD GaN was demonstrated for films with growth rate as high as 8.5 um/hr. The background [C] in LA-MOCVD GaN films decreases monotonically as the laser power increases. A low [C] at 5.5E15 cm-3 was achieved in LA-MOCVD GaN film grown with the growth rate of 4 um/hr. Charge transport characterization of LA-MOCVD GaN films reveals high crystalline quality with room temperature mobility >1000 cm2/Vs. LA-MOCVD growth technique provides an enabling route to achieve high quality GaN epitaxy with low-C impurity and fast growth rate simultaneously. This technique can also be extended for epitaxy of other nitride-based semiconductors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: physica status solidi (RRL) – Rapid Research Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.