Abstract
Corrosion rate behavior of laser welded dual-phase galvanized steel, DP 600, has been assessed in comparison with the material without the laser weld, in 3.5% NaCl solution. Three combinations of both scanning speed and laser power parameters were selected, maintaining the thermal input of 30 J mm-1, calculated as the ratio between the laser beam power [W] and the scanning speed [mm s-1]. The corrosion studies included measurements of open circuit potential, micro and macro polarization, showing higher corrosion rates as scanning speed decreased. Optical microscopy showed the formation of a grain size refined morphology in the heat affected zone and fusion zone. A mechanism has been proposed to explain the corrosion behavior as a function of the laser parameters, which dictated the galvanized coating vaporization.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have