Abstract

Conversion efficiency and spectra of extreme ultraviolet radiations from a cryogenic planar solid xenon target were investigated as a function of laser wavelength (ω, 2ω, and 3ω Nd:YAG) and the laser focus spot size (50–700μm) at the intensity 1010–5×1012W∕cm2. The conversion efficiency increased with laser intensity and reached the maximum value at about 1011W∕cm2 for all colors. It was found that an edge effect appears more strongly at the ω-laser case, indicating more lateral energy loss, while it appears only weakly for higher harmonics. Shorter-wavelength lasers generated significant conversion efficiencies even at lower laser energies; that is, with smaller laser spots. As the wavelength decreased from ω, 2ω, and 3ω, a spectral hump appeared in the extreme ultraviolet band around 13.5nm region, while the spectral intensity at 10.8nm drastically decreased. High-energy photon generation in the tail of 10.8nm peak was found to be strongly suppressed at shorter-wavelength laser (3ω), while the conversion efficiency at 13.5nm was as large as that at ω. This indicates that a Xe[XI] ion-rich plasma have been efficiently produced in the ablation plasma by using 3ω laser without overheating the underdense plasma responsible for extreme ultraviolet emission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call