Abstract

Optimization of welding for thermoplastic parts strongly depends on the material properties, part design, as well as the welding operating technology conditions. Laser transmission welding requires preferential deposition of energy and subsequent melting of the material in the interfacial zone. This is optimized when the laser beam is transmitted through the transparent part and absorbed by the adjoining part to be welded. Energy deposition can be controlled to some extent by adjusting laser parameters (power, choice of beam focussing optics, sweep rate etc.). The thermoplastic material properties may have the greater influence and need to be characterized for optimum material selection. Commercial nylon type materials cover a large array of compositions, which may affect the welding process. To guide selection of nylon based plastics for a range of applications we have measured the influence of specific factors such as fiber-glass, mineral filler, impact modifier content, additives, and color versions on the Near InfraRed (NIR) transmission properties. In a following paper (Part II) a1 we have related these findings to the mechanical performance of shear and butt joints produced under various laser welding technology conditions (laser beam power, welding speed, laser beam/spot diameter, clamp pressure, plastic color, etc.). Comprehensive results of this evaluation will assist designers and technologists in thermoplastics selection for laser welding applications. The purpose of this report is to increase the understanding of the plastics engineering community regarding the usefulness and possible applicability of laser transmission welding (LTW) technology for nylon made components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call