Abstract
Air plasma sprayed (APS) thermal barrier coatings (TBCs) are a widely used technology in the gas turbine industry to thermally insulate and protect underlying metallic superalloy components. These TBCs are designed to have intrinsically low thermal conductivity while also being structurally compliant to withstand cyclic thermal excursions in a turbine environment. This study examines yttria-stabilized zirconia (YSZ) TBCs of varying architecture: porous and dense vertically cracked (DVC), which were deposited onto bond-coated superalloys and tested in a novel CO2 laser rig. Additionally, multilayered TBCs: a two-layered YSZ (dense + porous) and a multi-material YSZ/GZO TBC were evaluated using the same laser rig. Cyclic exposure under simulative thermal gradients was carried out using the laser rig to evaluate the microstructural change of these different TBCs over time. During the test, real-time calculations of the normalized thermal conductivity of the TBCs were also evaluated to elucidate information about the nature of the microstructural change in relation to the starting microstructure and composition. It was determined that porous TBCs undergo steady increases in conductivity, whereas DVC and YSZ/GZO systems experience an initial increase followed by a monotonic decrease in conductivity. Microstructural studies confirmed the difference in coating evolution due to the cycling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Ceramic Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.