Abstract

We proposed a novel method to separate static and dynamic speckles based on spatial frequency domain filtering. First, the raw speckle image sequence is processed frame by frame through 2D Fourier transform, low-pass and high-pass filtering in the spatial frequency domain, and inverse Fourier transform. Then, we can obtain low- and high-frequency image sequences in the spatial domain. Second, we averaged both sequences in the time domain. After the above processing, we obtain the mean intensities of the dynamic and static speckle components in the spatial domain. Finally, we calculated the time-averaged modulation depth to map the 2-D blood flow distribution. Both phantom and vivo experiments demonstrated that the proposed method could effectively suppress the background non-uniformity and has the advantage of high computational efficiency. It also can effectively improve image contrast, contrast-to-noise ratio, and imaging dynamic range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.