Abstract

A Raman spectroscopic study was carried out on water in gelatin at 4% w/v in gel (25 °C) and sol (40–60 °C) states at various concentrations (0.5, 1, 5, 10 and 15 mM) of anionic surfactant, sodium dodecyl sulfate (SDS). The in-phase collective stretching mode vibration of hydrogen-bonded -OH oscillators, centered around 3250 cm−1 in a tetrahedral network of water molecules, was observed to be significantly affected by temperature and the presence of SDS. According to our observation this may be due to the thinning of the hydration water around the gelatin molecules due to strong thermal agitation. The peak center of the collective bands of water decreased linearly with SDS concentration in the gel state which implied that with the increase in concentration of SDS, the -OH oscillators gradually lost their attachment to gelatin chains and were replaced by SDS molecules. Ultimately this resulted in a thinning of the hydration layer around the gelatin and the oscillation frequency of -OH oscillators moved towards 3250 cm−1 at 1 mM SDS concentration resulting in increased coupling of -OH oscillators to form the tetrahedral network at the critical micelle concentration (cmc) of SDS. The variation in the peak amplitudes and the systematic reversal of their trend about the cmc axis was surprising. At 40 °C the amplitude of the peak at 3250 cm−1 increased drastically due to a possible coil expansion by about 7–8% which accommodated more interstitial water into the pseudonetwork leading to an increase in the number of nearest neighbors and for about 6% increase in the C value. However, at the cmc the peak amplitude was observed to be independent of temperature. Continuous shifting of the peak center and full width at half-maxima towards lower values was observed with increasing SDS concentrations in the gel state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call