Abstract
Processing of mesoscale structures of soft matter and liquid is of great importance in both science and engineering. In this work, we introduce the concept of laser-assisted micromachining to this field and inject a certain number of microdroplets into a preselected location on the surface of a liquid crystal drop through laser irradiation. The impact of laser energy on the triggered injection is discussed. The sequentially injected microdroplets are spontaneously captured by the defect ring in the host drop and transported along this defect track as micro-cargos. By precisely manipulating the laser beam, the tailored injection of droplets is achieved, and the injected droplets self-assemble into one necklace ring within the host drop. The result provides a bottom-up approach for the in-situ and three-dimensional microfabrication of droplet structure of soft matter using a laser beam, which may be applicable in the development of optical and photonic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.