Abstract

The feasibility of enhancing the thermal conductivity of an alloy via microstructural refinement was examined using Al–12%Si alloy as a model material. Al–12Si alloy samples were fabricated at different process parameters using laser engineered net shaping (LENS™) and the effect of microstructural features on the thermal conductivity was studied and compared with conventionally cast alloy. The large difference in melting points and laser light absorptivities of Si and Al as well as the low melt viscosity of Al–12Si alloy resulted in a very small process window to successfully fabricate bulk Al–12Si alloy samples using LENS™. Comparison of microstructural features of laser-processed samples with cast Al–12Si alloy showed significant refinement in eutectic Si for laser processed samples. Microstructural refinement not only improved the thermal conductivity of Al–12Si alloy but also compensated the detrimental effect of porosity on thermal conductivity. The thermal conductivity of cast alloy varied between 82 and 93 W/mK, which is ∼21–76% lower than the values exhibited by laser-processed samples in the range 103–153 W/mK. The results of LENS™ fabrication, microstructural evolution and thermal properties of Al–12Si alloy bulk structures can be extended to other immiscible alloys and metal matrix composites for a variety of engineering applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.