Abstract

As a fundamentally different process for creation of complex parts, laser powder bed fusion (LPBF) additive manufacturing exhibits complex behavior at the melt pool that has a direct influence on the macroscopic properties of the final material. Powder denudation, a previously studied deleterious phenomenon, is the displacement of powder due to entrainment in a jet of rapidly vaporized metal created by the process laser. To minimize the effect of denudation and inspired by methods in adjacent fields, a laser pre-sintering (LPS) method was studied in an effort to reduce denudation. LPS was found to be most effective in the 1–4 J/mm 3 volumetric energy density processing regimes, minimizing the common experimentally observed problems with the LPBF process. Scanning electron microscopy of the LPS-treated powder bed revealed insight into the accelerating effect morphological irregularities along the powder particle surface have in the pre-sintering process. To further understand the process, an estimation of the sintered neck sizes necessary to eliminate denudation in LPS is made, qualitatively affirming the low energy densities needed to prevent denudation. The results presented in this work represent an initial step towards understanding and implementing LPS as a quality-enhancing step in LPBF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.