Abstract

Titanium alloys of near-α Ti–6Al–2Sn–4Zr–2Mo (Ti-6242) and intermetallic γ-TiAl (Ti–48Al–2Cr–2Nb) are commonly served as turbine blade materials operating at elevated temperatures. This study investigated the feasibility of using laser powder bed fusion (L-PBF) to fabricate two Ti–6Al–4V-based bimetals, i.e., Ti–6Al–4V/γ-TiAl and Ti–6Al–4V/Ti-6242, which may have great potential for the future manufacturing of aerospace components. Results indicated that the bimetal of Ti–6Al–4V/γ-TiAl was unsuccessfully built despite a gradient interface (∼250 μm) achieved via L-PBF. This failure was attributed to the intrinsic cold cracking of γ-TiAl processed by L-PBF instead of the weak interfacial bonding between the two materials. In comparison, another pair of bimetal, Ti–6Al–4V/Ti-6242, was manufactured successfully by L-PBF, resulting in a solid and defect-free interface. Horizontal tensile tests were conducted, and the ultimate strength of the bimetal Ti–6Al–4V/Ti-6242 was 1314 ± 21 MPa. However, compared to single materials, the elongation of the bimetal was lowered to 2.8 ± 0.9% because of the mechanical incompatibility between Ti–6Al–4V and Ti-6242.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.