Abstract

A demountable hollow cathode discharge cell that is useful for studies of plasmas relevant to chemical vapor deposition (CVD) was assembled and demonstrated. Direct current glow discharge decomposition of 10% silane in helium in this cell at 20 Torr produced silicon-containing cathodic thin films that were subsequently examined with the use of Raman and x-ray fluorescence spectroscopy. A pulsed dye laser-excited optogalvanic detection technique was used to monitor the presence of a transient molecular intermediate—silicon hydride—in this decomposition plasma. An optogalvanic spectrum of the SiH A2δ -X2τ transition near 420 nm is presented. This electronic absorption technique complements other spectroscopic methods for mechanistic studies and optimization of glow discharge CVD plasmas that are currently used for the commercial preparation of technologically important thin film materials such as hydrogenated amorphous silicon. It will be particularly useful for detection of nonluminescent plasma intermediates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.