Abstract
The laser-induced femtosecond demagnetization in ferromagnetic metals is investigated theoretically. Different from the conventional nanosecond one, this ultrafast demagnetization is a cooperative effect of the external laser field and the internal spin-orbit coupling. The spin-orbit coupling smears out the original identities of triplets and singlets while the laser field uses it as an avenue to influence demagnetization. Importantly, this demagnetization can be manipulated controllably, an essential point to future applications, such as ultrafast control of magneto-optical gating. Finally, the polarization filter effect on the ultrafast time scale is discussed based upon the present theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.