Abstract

Laser-matter interaction is commonly described regarding three main factors: laser beam, materials and environment. Conversion of absorbed energy via collision process into heat is the most important effect that occurs during laser interaction. Short-pulsed laser beam induces fast transition from the overheated liquid to a mixture of vapor and drops which allows the ablation of micrometric layers. Specific patterns can then be achieved using scanning and automation technology also called laser texturing. New materials with specific properties such as endurance life and/or lower environmental impact attract emerging technologies such as thermal spraying. However, adhesive bond strengths have to be high enough to play a key role in surface properties. A clean surface to enhance mechanical interlocking is a key element. Mechanical and physico-chemical bond strength for thick coatings elaborated by thermal spray process can then be developed using laser. The aim of the present paper is to show the potential of such emerging treatments through new results using various thermal spray processes (thermal spraying as well as cold spraying). Metal or organic materials were investigated implementing various powders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.