Abstract
Drinking water contamination by microplastic particles is a global concern that is becoming increasingly common due to consumer abuse, and we use laser fractionation spectroscopy to examine what microplastic particles in water packaging can do. Several types of bottled water were sampled at several manufacturing facilities in Baghdad. The presence of the measured micropolymer species in water was immediately classified and detected using a laser production resolution spectrometer as well as signal and plasma scattering spectra, various MP polymers “polyethylene terephthalate, polystyrene, polypropylene, polyethylene, and polyvinyl chloride” are five polymers that were successfully detected in drinking water to validate the ability to identify health risk factors based on potential environmental risk index (RI) and potential environmental risk factors (Tin), the results are calculated to show that risk predicates have evolved over a decade depending on the risk factors. To do. The smallest particle was 20 microns and the largest particle was 63.4 microns. Microplastics were detected in 5 out of 10 samples, PET in 4 samples, PS and PP in 2 samples, and PVC in sample 1, the most common polymer in bottled water is polyethylene. The average C/H ratios of the five samples were PE (1.76), PET (1.21), PS (1.52), PP (1.23), and PVC (0.99), on average, the measured trends of C/H values were [PE greater than PS], [PP greater than PET], and [PVC greater than PET]. According to our results, the integration of LIBS technology provides a fast and efficient way to detect microplastics. It has a high resolution of fine particles, allowing the detection of very small particles associated with various adverse effects on human health. The feasibility study for water bottling was approved, and the WHO water quality criteria were confirmed. As a result, we will undertake a thorough analysis of the best water bottling quality. In this study, the initial LIBS signals of several samples were used to completely detect microplastics. Microplastics in bottled water samples have been detected and quantified using LIBS spectroscopy techniques with Ecological Potential Ecological Risk. Analytical technology is used to investigate sources, perform research, and collect relevant data, worldwide reports, and permitted statistics to deliver crucial insights and recommendations.Water samples were obtained from several locations throughout Baghdad. At the source, 2 liters of water were obtained in plastic bottles for each sample, for a total of 10 samples. Each sample is owned by the factories that supplied it.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have