Abstract

The nanosecond pulsed laser ablation of fine iron powder submerged under different liquid media (water, methanol, ethanol, and isopropanol) is used to rapidly produce a variety of iron oxide nanostructures from nanoparticles to nanowires and nanosheets. The dimensionality of the nanostructures is shown to be a consequence of two controllable mechanisms. The rapid oxidation, collisional quenching, and coalescence of the ablation products are suggested as the dominant mechanisms for the formation of zero-dimensional nanostructures such as hematite (α-Fe2O3) nanoparticles in water, or iron oxyhydroxide nanoparticles under alcohols. By employing different laser wavelengths (248 and 532 nm) it is demonstrated that the growth of extended iron oxyhydroxide nanostructures (one-dimensional nanowires and two-dimensional nanosheets) under methanol is possible and is a consequence of a second self-assembly mechanism driven by interaction between the UV laser pulses and the ablation products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call