Abstract
Abstract The binding energy of shallow-donor impurities in a cylindrical quantum well wire irradiated by an intense non-resonant laser field is calculated within the effective mass approximation by using a variational procedure. Accurate laser-dressing effects are considered for both the confinement potential of the wire and the Coulomb potential of the impurity. The computation of the ground state subband energy eigenfunctions for different laser field intensities is based on a bidimensional finite element method. Important changes of the electron probability density under intense laser field conditions are predicted. The study reveals that the laser field compete with the quantum confinement and breaks down the degeneracy of states for donors symmetrically positioned within the nanostructure. A proper analysis of the density of impurity states is found to be essential for controlling the optical emission related to shallow donors in semiconductor quantum wires.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have