Abstract

High-purity fused silica irradiated by third harmonic of the Nd:YAG laser in vacuum with different laser pulse parameters was studied experimentally. Laser-induced defects are investigated by UV spectroscopy, and fluorescence spectra and correlated to the structural modifications in the glass matrix through Raman spectroscopy. Results show that, for laser fluence below laser-induced damage threshold (LIDT), the absorbance and intensity of fluorescence bands increase with laser energies and/or number of laser pulses, which indicates that laser-induced defects are enhanced by laser energies and/or number of laser pulses in vacuum. The optical properties of these point defects were discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.