Abstract

This paper presents the results of an experimental and computational study of the effects of laser-induced heating provided by magnetite nanocomposite structures that are being developed for the localized hyperthermic treatment of triple-negative breast cancer. Magnetite nanoparticle-reinforced polydimethylsiloxane (PDMS) nanocomposites were fabricated with weight percentages of 1%, 5%, and 10% magnetite nanoparticles. The nanocomposites were exposed to incident Near Infrared (NIR) laser beams with well-controlled powers. The laser-induced heating is explored in: (i) heating liquid media (deionized water and cell growth media [Leibovitz L15+]) to characterize the photothermal properties of the nanocomposites, (ii) in vitro experiments that explore the effects of localized heating on triple-negative breast cancer cells, and (iii) experiments in which the laser beams penetrate through chicken tissue to heat up nanocomposite samples embedded at different depths beneath the chicken skin. The resulting plasmonic laser-induced heating is explained using composite theories and heat transport models. The results show that the laser/nanocomposite interactions decrease the viability of triple-negative breast cancer cells (MDA-MB-231) at temperatures in the hyperthermia domain between 41 and 44°C. Laser irradiation did not cause any observed physical damage to the chicken tissue. The potential in vivo performance of the PDMS nanocomposites was also investigated using computational finite element models of the effects of laser/magnetite nanocomposite interactions on the temperatures and thermal doses experienced by tissues that surround the nanocomposite devices. The implications of the results are then discussed for the development of implantable nanocomposite devices for localized treatment of triple-negative breast cancer tissue via hyperthermia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.