Abstract

The laser-induced damage threshold (LIDT) was measured for a Z n G e P 2 crystal exposed to 0.3-9.5ps 1030-nm laser pulses. Single-pulse LIDT fluence was ∼0.22J/c m 2 for the laser pulse widths of 0.3-3.5ps and increased until 0.76J/c m 2 for 9.5-ps pulses. Multi-pulse LIDT fluence for 0.3-ps pulses at repetition frequencies in the range of 100Hz-1kHz was ∼0.053J/c m 2 and decreased further at higher, multi-kHz, pulse repetition frequencies. The coating of the Z n G e P 2 crystal surface with an anti-reflection multi-layer thin film increased the multi-pulse LIDT by one order of magnitude, up to 0.62J/c m 2 (about 2T W/c m 2). The significant increase in LIDT coupled with a decrease in reflection losses provides a way to cardinally improve efficiency of frequency conversion of popular 1-µm ultrashort pulses into mid- and far-IR ranges with a thin AR-coated Z n G e P 2 crystal sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.