Abstract
Two of the main items from which to retrieve data in anthropology are teeth and bones. Identification of trace elements in their composition allows valuable information to be obtained about alimentary habits and community life conditions of groups and individuals. Conventional methods used to determine the presence of trace elements require sample preparation, with partial or total destruction of the pieces, which in most cases are unique. In this work we show the possibilities of laser-induced breakdown spectroscopy (LIBS) as a nearly nondestructive tool in anthropology and paleontology for the measurement of the presence and distribution of trace elements in teeth. We applied LIBS to the determination of strontium and magnesium in dentin and enamel of Neolithic, middle age, and modern Homo sapiens teeth. Mg/Ca and Sr/Ca distribution maps of dentin and enamel in modern teeth were created using the data obtained. Ablation threshold fluences of dentin and enamel were also measured using the photoacoustic signal induced by laser ablation. Significant variations were found in the Mg/Ca and Sr/Ca ratios in the tooth dental tissue and between the teeth of the groups and individuals studied. These results can be useful for evolutionary anthropology studies as they can provide information regarding early nutrition, seasonality, and residential mobility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.