Abstract

A noncontact all-optical method for surface photoacoustics is described. The surface acoustic waves (SAWs) were excited employing a KrF laser and detected with a Michelson interferometer using a 633-nm HeNe laser. Due to an active stabilization scheme developed for the interferometer a surface displacement of 0.2 Å could be detected. The materials investigated included pure materials such as polycrystalline aluminum, and crystalline silicon; films of gold, silver, aluminum, iron, and nickel on fused silica; and a-Si:H on Si(100). In the case of pure materials the shape of the acoustic pulse and the phase velocity were determined. The dispersion of the SAW phase velocity observed for the film systems was used to extract information on the film thickness, density, and transverse and longitudinal sound velocity. Models for the theoretical treatment of film systems and the calculation of dispersion curves are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.