Abstract

A method for calculating the characteristics of surface acoustic wave (SAW) propagation in a deformable piezoelectric multilayer medium is presented. The effect of longitudinal and lateral mechanical strain on the SAW phase velocity in a (ZnO or AIN)/SiO2/Si thin film structure for {001}, {111} and {110} silicon crystal planes within the temperature range 293–673 K is studied. The effects of thickness and internal mechanical stresses in the ZnO or A1N piezoelectric film and SiO2 dielectric film on the sensitivity of the SAW phase velocity to strains in the structure are investigated. The Si{110}-based SAW structure with the SAW wavevector oriented in the 〈110〉 direction is shown to possess maximum operating frequency sensitivity to both longitudinal and lateral strain. The parameters of SAW structure stable to mechanical loads are determined. ZnO and SiO2 layer deposition on silicon is shown to increase the SAW phase velocity sensitivity to longitudinal strain and to decrease its sensitivity to lateral strain in the structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call