Abstract

Despite a lot of research done in the field of laser forming, generation of a symmetric bowl shaped surface by this process is still a challenge mainly because only a portion of the sheet is momentarily deformed in this process, unlike conventional sheet metal forming like deep drawing where the entire blank undergoes forming simultaneously reducing asymmetry to a minimum. The motion of laser beam also makes the process asymmetric. To counter these limitations this work proposes a new approach for laser forming of a bowl shaped surface by irradiating the centre of a flat circular blank with a stationary laser beam. With high power lasers, power density sufficient for laser forming, can be availed at reasonably large spot sizes. This advantage is exploited in this technique. Effects of duration of laser irradiation and beam spot diameter on the amount of bending and asymmetry in the formed surface were investigated. Laser power was kept constant while varying irradiation time. While varying laser spot diameter laser power was chosen so as to keep the surface temperature nearly constant at just below melting. Experimental conditions promoted almost uniform heating through sheet thickness. The amount of bending increased with irradiation time and spot diameter. It was interesting to observe that blanks bent towards the laser beam for smaller laser beam diameters and the reverse happened for larger spot diameters (~10 times of the sheet thickness). Effect of spot diameter variation has been explained with the help of coupled thermal-structural finite element simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.