Abstract

The aim of the present study was to assess the possibility to measure caries-induced laser fluorescence underneath a novel nano-filled fissure sealant. Sixty freshly extracted human teeth with occlusal dentine carious lesions were horizontally divided, exposing the respective lesion. Teeth were randomly assigned to three groups: (I) white fissure sealant with filler particles (Fissurit F, Voco), (II) clear fissure sealant without filler particles (Fissurit, Voco) and (III) novel experimental fissure sealant with nano-filler particles (Voco). Starting with a sealant thickness of 3 mm, laser fluorescence measurements (DIAGNOdent, KaVo) were performed after finishing the sealant surfaces with polishing papers, reducing the material at intervals of 0.5 mm until the sealant was removed completely. Evaluating a thickness of 0.5 mm, both the clear (83 % of the baseline fluorescence after fine grit polishing) and the white sealant (25 %) did not allow to measure baseline fluorescence (p < 0.05) with no fluorescence reduction in the experimental sealant group (p > 0.05). With increasing sealer thickness, fluorescence was influenced even by the experimental material (89 % of the baseline value at 1 mm). However, by using the experimental material, statistically significant higher fluorescence values than those for the other materials under study (p < 0.05) were obtained. Thicker sealant layers and coarse grit polishing caused a decrease of laser fluorescence in all groups (p < 0.05). Employing the experimental nano-filled sealant, laser fluorescence measurements for caries detection can be performed through thicker sealant layers compared to conventional sealant materials. Thus, it might be possible to use this material to assess a caries progression underneath the sealant and administer an appropriate therapy in due time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.