Abstract

Using methods of time-resolved and stationary photolysis, HPLC-MS and quantum-chemical calculations by the DFT method, the mechanism of direct UV photolysis of the antibiotic chloramphenicol (CAP) was established. For the first time, short-lived intermediates formed during photolysis were detected. The primary photoprocess is the cleavage of the β-C-C bond relative to the aromatic system with the formation of 4-nitrobenzylalcohol radical and residual aliphatic radical. The first radical in deoxygenated solutions predominantly transforms into para-nitrobenzaldehyde and its secondary photolysis products. In the presence of oxygen, the aromatic radical and para-nitrobenzaldehyde are transformed into para-nitrosobenzoic and para-nitrobenzoic acids as a result of reaction with reactive oxygen species (ROS). Formation of ROS is provoked by reactions of aliphatic radical with dissolved oxygen, so this radical is very important for CAP degradation. The quantum yield of direct photolysis of CAP is ∼3% and does not depend on the presence of dissolved oxygen and on the change of the excitation wavelength in the range of 254–308 nm. Obtained data are important for further understanding of the transformation pathways of CAP and similar PPCP in natural and wastewaters under the action of sunlight and artificial UV radiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.