Abstract

The generation of hot electrons at grazing incidence of a subpicosecond relativistic-intense laser pulse onto the plane solid target is analyzed for the parameters of the petawatt class laser systems. We study the preplasma formation on the surface of solid Al target produced by the laser prepulses with different time structure. For modeling of the preplasma dynamics we use a wide-range two-temperature hydrodynamic model. As a result of simulations, the preplasma expansion under the action of the laser prepulse and the plasma density profiles for different contrast ratios of the nanosecond pedestal are found. These density profiles were used as the initial density distributions in 3-D PIC simulations of electron acceleration by the main P-polarized laser pulse. Results of modeling demonstrate the substantial increase of the characteristic energy and number of accelerated electrons for the grazing incidence of a subpicosecond intense laser pulse in comparison with the laser-target interaction at normal incidence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.