Abstract

Advanced accelerator concepts usually address linear acceleration schemes. Storage rings, however, are often superior to linear machines regarding repetition rate, stability and efficiency. The radiative energy loss per turn in an electron storage ring is compensated by radiofrequency resonators with a wavelength of the order of 1 meter, which corresponds to the spacing between consecutive potential wells, so-called buckets, and results in a bunch length around 1 centimeter or several 10 picoseconds. As an alternative, longitudinal focusing could be performed by a laser wave co-propagating with the electrons in an undulator. Considering a continuous-wave carbon dioxide laser beam as an example, the bucket spacing would be 10.6 micrometer with a bunch length in the femtosecond range. The paper discusses chances and limitations of such a laser-driven storage ring concept with steady-state femtosecond bunches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call