Abstract
Laser desorption ionization using time-of-flight mass spectrometer afforded with quadrupole ion trap was used to study As2Ch3 (Ch = S, Se, and Te) bulk chalcogenide materials. The main goal of the study is the identification of species present in the plasma originating from the interaction of laser pulses with solid state material. The generated clusters in both positive and negative ion mode are identified as 10 unary (S p+/- and As m+/- ) and 34 binary (As m S p+/- ) species for As2S3 glass, 2 unary (Se q+/- ) and 26 binary (As m Se q+/- ) species for As2Se3 glass, 7 unary (Te r+/- ) and 23 binary (As m Te r+/- ) species for As2Te3 material. The fragmentation of chalcogenide materials was diminished using some polymers and in this way 45 new, higher mass clusters have been detected. This novel approach opens a new possibility for laser desorption ionization mass spectrometry analysis of chalcogenides as well as other materials. Graphical abstract ᅟ.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have