Abstract

The main purpose of the investigation is to develop reliable methods to repair IN 792 superalloy components by Laser Beam Welding (LBW). The jet engine structural components made of nickel-base superalloys are subjected to high stresses and severe environmental, therefore crack may occurs during in-service life. Considering the high cost of this components they are often repaired by welding. Welds must be made: (i) by altering as little as possible the original microstructure; (ii) without introducing in the molten (MZ) and heat affected (HAZ) zones relevant residual stresses; (iii) without producing cracks in MZ and HAZ; (iv) without massive chemical segregation; (v) without elemental diffusion changing the composition of g and g’ phases.LBW has been used to realize seams on 2mm-thick plates of directionally solidified (DS) IN792 superalloy. An Yb fiber laser has been employed in present experiments and the molten pool was shielded from oxidation through a patented equipment. A grid of samples has been prepared by varying the pass speed v from 1 to 2.0 m/min with pre-heating temperature of 200 °C. The microstructural changes occurring in the microstructure of molten zone (MZ) and heat affected zone (HAZ) have been investigated by optical and scanning electron microscopy (SEM) observations and energy dispersion spectroscopy (EDS).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call