Abstract

The heat affected zone (HAZ) cracking behaviour in a laser beam directionally solidified (DS) Rene 80 nickel based superalloy subjected to preweld heat treatments was studied. The HAZ cracks in the alloy are grain boundary liquation cracks caused by liquation reaction of both non-equilibrium secondary solidification product, MC carbides and equilibrium solid state reaction product, γ′ precipitates. In contrast to theoretical prediction based a preweld heat treatment that reduced grain boundary liquid film thickness did not result in a lower HAZ cracking, which can be related to concomitant reduction in the ability of the base alloy to relax welding stress. In addition, formation of intergranular M5B3 boride particles in preweld alloy appeared to have aided cracking susceptibility by lowering grain boundary liquation temperature and widening the brittle temperature range in the HAZ during cooling. Based on the analysis of the results, application of a new preweld heat treatment that prevents the formation of the intergranular borides and induces moderate base alloy hardness resulted in a nearly crack free HAZ in laser welded DS Rene 80 superalloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call