Abstract

The interaction of the light carrying orbital angular momentum (OAM) with a single spherical particle is explored using a commercial multi-physics simulation platform. The scattering of light with wavelength of 0.532 µm from an ice particle is presented. The research focuses on studying the light-matter interface within an observation volume of radius 10 times the wavelength (5.32 µm) and present near-field magnitude and phase of the scattered field. We place the particle at the various locations of a Gaussian beam, as well as move it to through the vortex and annulus of the light that carries OAM with topological charges of 1, 2 and 3. The numerical solutions showcase the variations of the scattering field complex values and provide a valuable insight in the field behaviour near and inside the particle for different illumination. We show two and three-dimensional scattering field magnitude and phase spatial distributions and their correlations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.