Abstract

We demonstrate a laser-based adaptive ultrasonic homodyne receiver using dynamic holography in AlGaAs/GaAs photorefractive multiple quantum wells. The dynamic hologram acts as an adaptive beamsplitter that compensates wavefront distortions in the presence of speckle and requires no path-length stabilization. The photorefractive quantum wells have the unique ability to achieve maximum linear homodyne detection regardless of the value of the photorefractive phase shift by tuning the excitonic spectral phase. We achieve a root mean square noise-equivalent surface displacement of 6.7×10−7 Å(W/Hz)1/2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call