Abstract
A laser-based double beam absorption detection system for aggregation immunoassays has been developed. The assay was based on the aggregation of gold nanoparticles that are coated with protein antigens in the presence of their corresponding antibodies. The aggregation of the gold nanoparticles results in an absorption change that is monitored at 635 nm using the double beam spectrometer. The noise level of the spectrometer is 1x10(-6)arbitrary units. This corresponds to a tenfold improvement in comparison to commercial absorption detectors and is comparable with previously reported more complicated laser-based absorption spectrometers. The dye Nile-Blue-A was used to test the analytical performance of the system. A limit of detection of 3x10(-8 )M Nile-Blue-A was observed. The relative standard deviation between consecutive measurements was lower than 1.5%. The system is suitable for field applications of aggregation-based immunoassays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.