Abstract

Laser annealing of semiconductor materials is a processing technique offering interesting application features when intense, transient and localized heat sources are needed for electronic device manufacturing or other nano-technological applications. The space-time localization of the induced thermal field (in the nanoseconds/nanometers scale) promotes interesting non-equilibrium phenomena in the processed material which only recently have been systematically investigated and modelled. In this review paper we discuss the current knowledge on anomalous kinetics occurring in implanted silicon and germanium (i.e. thin layers of disorder diluted alloys of Si and Ge, with variable initial disorder status according to the implantation conditions) during the pulsed laser irradiation. In particular, we focus our attention on the anomalous impurity redistribution in the transient melting stage and on the formation of non conventional and metastable extended defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.