Abstract

In this research, piezoelectric polymer nanocomposite films were produced through solution mixing of laser-synthesized Au nanoparticles in poly (vinylidene fluoride) (PVDF) matrix. Synthetization of Au nanoparticles was carried out by laser ablation in N-methyle-2-pyrrolidene (NMP), and then it was added to PVDF: NMP solution with three different concentrations. Fourier transformed infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were carried out in order to study the crystalline structure of the nanocomposite films. Results revealed that a remakable change in crystalline polymorph of PVDF has occurred by embedding Au nanoparticles into the polymer matrix. The polar phase fraction was greatly improved by increasing the loading content of Au nanoparticle. Thermogravimetric analysis (TGA) showed that the nanocomposite films are more resistant to high temperature and thermal degradation. An increment in dielectric constant was noticed by increasing the concentration of Au nanoparticles through capacitance, inductance, and resistance (LCR) measurement. Moreover, the mechanical properties of nanocomposites were numerically anticipated by a finite element based micromechanical model. The results reveal an enhancement in both tensile and shear moduli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.