Abstract

The ability of the crown ethers (1–4), containing the ortho- or para- methoxyphenoxy-methyl substituents in their structure, to chiral recognition in reference to amino acid esters has been investigated by electrospray ionization mass spectrometry (ESI-MS). The method allows registering the diastereomeric complexes between the studied crowns as hosts and the protonated alanine, phenylglycine and phenylalanine methyl esters as guests in the gas phase. ESI-MS experiments using isotopically labeled guests provide robust and reproducible results, indicating a moderate degree of chiral discrimination in the series of the studied crown ethers. ESI-MS experiments using achiral amine as a reference yielded the results comparable with the previous method. It has been found that (S)-enantiomers of the crowns bind predominately (S)-enantiomers of the amino acid esters, and vice-versa. It has been shown that the chiral ortho-substituted crown (S)-1 demonstrates the more pronounced values for chiral discrimination as compared with the para-substituted crown (S)-2. This fact indicates the interrelationship between the chiral recognition and the lariat nature of crown 1. Increasing the size of the cavity and the presence of a flat aromatic moiety in crowns 3 and 4 strengthens their complexing ability, simultaneously weakening the enantioselectivity of the complexation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.