Abstract

A turbulent circular disk wake database (Chongsiripinyo & Sarkar, J. Fluid Mech., vol. 885, 2020) at Reynolds number $Re = U_\infty D/\nu = 5 \times 10^{4}$ is interrogated to identify the presence of large-scale streaks – coherent elongated regions of streamwise velocity. The unprecedented streamwise length – until $x/D \approx 120$ – of the simulation enables investigation of the near and far wakes. The near wake is dominated by the vortex shedding (VS) mode residing at azimuthal wavenumber $m=1$ and Strouhal number $St = 0.135$ . After filtering out the VS structure, conclusive evidence of large-scale streaks with frequency $St \rightarrow 0$ , equivalently streamwise wavenumber $k_x \rightarrow 0$ in the wake, becomes apparent in visualizations and spectra. These streaky structures are found throughout the simulation domain beyond $x/D \approx 10$ . Conditionally averaged streamwise vorticity fields reveal that the lift-up mechanism is active in the near as well as the far wake, and that ejections contribute more than sweeps to events of intense $-u'_xu'_r$ . Spectral proper orthogonal decomposition is employed to extract the energy and the spatiotemporal features of the large-scale streaks. The streak energy is concentrated in the $m=2$ azimuthal mode over the entire domain. Finally, bispectral mode decomposition is conducted to reveal strong interaction between $m=1$ and $St = \pm 0.135$ modes to give the $m=2$ , $St \rightarrow 0$ streak mode. Our results indicate that the self-interaction of the VS mode generates the $m=2$ , $St \rightarrow 0$ streamwise vortices, which leads to streak formation through the lift-up process. To the authors’ knowledge, this is the first study that reports and characterizes large-scale low-frequency streaks and the associated lift-up mechanism in a turbulent wake.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call