Abstract
Nowadays, there is a rapid increase in the number of sensor data produced by a wide variety of devices and sensors. Collections of sensor data can be semantically described using ontologies, e.g., the Semantic Sensor Network (SSN) ontology. Albeit semantically enriched, the volume of semantic sensor data is considerably larger than raw sensor data. Moreover, some measurement values can be observed several times, and a large number of repeated facts can be generated. We devise a compact or factorized representation of semantic sensor data, where repeated values are represented only once. To scale up to large datasets, tabular representation is utilized to store and manage factorized semantic sensor data using Big data technologies. We empirically study the effectiveness of the proposed factorized representation of semantic sensor data, and the impact of factorizing semantic sensor data on query processing. Furthermore, we evaluate the effects of storing RDF factorized data on state-of-the-art RDF engines and in the proposed tabular-based representation. Results suggest that factorization techniques empower storage and query processing of sensor data, and execution time can be reduced by up to two orders of magnitude.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.